
ICT394 Business Intelligence

Application Development

Dr Danny Toohey

ICT285 Databases

Dr Danny Toohey

Topic 02: The Relational Model

Topic Learning Outcomes

After completing this topic you should be able to:

• Describe the characteristics of the relational database model

• Define and give examples of the different types of keys used in the
relational database model

• Explain and give examples of the relational model’s integrity
constraints

• Use the fundamental operators of the relational algebra (restrict,
project, Cartesian product, join, intersection, difference, union, and
division) to define simple queries

Resources for this topic

READING

- Kroenke & Auer, 13th ed: Chapter 3 p.150-156 (RM Terminology; Alternative
Terminology); p161-163 (Keys)

- Kroenke & Auer, 14th ed: Chapter 3 p.168-172 (RM Terminology; Alternative
Terminology); p177-180 (Keys)

My Unit Readings:

- Connolly & Begg: Relational Algebra

- Codd’s original paper “A relational model of data for shared data banks”:
http://www.seas.upenn.edu/~zives/03f/cis550/codd.pdf (for interest)

http://www.seas.upenn.edu/~zives/03f/cis550/codd.pdf

Topic Outline

1. Relational model characteristics

2. Keys

3. Constraints

4. Relational algebra

Topic 02: Part 01

Relational model characteristics

The Relational Model (RM)

• In Topic 1 we discussed a number of different data models used in
databases, including hierarchical, network, object-oriented, noSQL, etc

• For the majority of this unit we will concentrate on the relational database
model:

- It is currently very widely used (and is expected continue to be) as the
basis for commercial database systems

- It has a strong theoretical base

- It is widely understood

The Relational Model

The relational model was created by E.F. Codd in
the late 1960’s

- RM was developed in response to problems of
inflexibility associated with the navigational data
models

- Relationships in RM represented through values, not
predefined links

- This enables queries to be much more simply
expressed, plus great flexibility in querying data sets

- Many relational DBMSs today; use SQL as standard
query language

https://www-03.ibm.com/ibm/history/exhibits/builders/builders_codd.html
https://www-03.ibm.com/ibm/history/ibm100/us/en/icons/reldb/

https://www-03.ibm.com/ibm/history/exhibits/builders/builders_codd.html
https://www-03.ibm.com/ibm/history/ibm100/us/en/icons/reldb/

Relational Model concepts

We said that a data model has 3 features:

Data Structure

- In the RM, the structure is the relation, made up of tuples,
attributes, domains

Operators

- In the RM, the operators are defined by the relational calculus
and relational algebra

Constraints

- In the RM, constraints are provided by keys and integrity
constraints

RM concepts

Conceptually, a relation is a table of values:

• Each tuple (row) in the table represents a collection of related data values

• Each attribute (column) of the table specifies how to interpret the data
values in each row

• The type of data (or set of allowable values) that can appear in each
attribute is called the domain

• Each tuple is unique and is identified by a key

StudentID FamilyName Degree Major GPA

12345678 WELLS BSc ISD 3.00
12456789 NORBERT BSc CS 2.70

23456789 KENDALL BSc GT 3.50

EmpNo FamilyName GivenName DeptNo

12345678 Smith John 5

23456789 Wong Franklin 2

34567890 Zelaya Alicia

45678901 Wallace Jennifer 2

DeptNo DeptName

1 Research

2 Admin

3 HQ

5 Youth

• Relations are linked through
matching values of primary keys
and foreign keys

• This is what gives the relational
model great flexibility and the
ability to ask ad-hoc queries

RM concepts

Properties of a relation

A valid relation has the following properties:
- A name that is distinct from all other relations

- Each attribute in a relation has a distinct name

- All cell values are atomic (multi-valued attributes are not
allowed) – i.e., each row/column intersection represents a single
data value

- Values in attributes are from the same domain

- The attribute domain is the set of all possible values it may
take. Definition covers both physical (data type) and logical
(semantic) values

- All tuples must be unique – i.e., there must be an attribute or
set of attributes that uniquely identifies each row

- Attributes are not ordered

- Tuples are not ordered

Example relation

StudentID FamilyName Degree Major GPA

12345678 WELLS BSc BIS 3.00

12456789 NORBERT BSc CS 2.70

23456789 KENDALL BSc GT 3.50

Note the following features of the Student
relation above:

1. Each tuple is unique

2. Each tuple is about ONE student

3. Each attribute contains data from the same
domain

4. Each attribute has a unique name

5. Each cell is atomic

Is this a valid relation?

StudentID FamilyName Degree Major GPA

12345678 WELLS BSc BIS 3.0

CS 3.5

12456789 NORBERT BSc CS
GT

D

23456789 KENDALL BSc CFIS 3.5

23456789 KENDALL BSc CFIS 3.5

Why? Why not?

Relation schema

A relation can be described by its name and
attributes

- this is called the relation schema

e.g. STUDENT (StudentNo, StudentName, Email, Course)

We can also show the values of each tuple in a
populated relation

- this is usually shown in table form:

StudentNo StudentName Email Course

12345678 WELLS wells@murdoch... B1317

12456789 NORBERT norbert@yahoo... B1317

23456789 KENDALL kendall@gmail … B1317

How do we write relation schemas?

There is no real standard, but the following
convention is often used:

• The relation name is uppercase (STUDENT)

• Attributes are initial uppercase (StudentName)

• Primary keys are underlined (StudentNo)

• Foreign keys are bolded (Course) or sometimes
italic (Course)

• The schema is written with the relation name
followed by the attributes in brackets:

STUDENT (StudentNo, StudentName, Email, Course)

The takeaways…

• The relational database model consists of relations of attributes
and tuples (=tables of columns and rows)

• A valid relation has a number of properties:
• Relation names are unique, and attribute names are unique within a

relation

• Tuples are unique

• Attribute values are from the same domain

• Each cell is single valued (atomic)

• The order of the rows and columns is unimportant

Topic 02: Part 02

Keys

Keys

• Recall that each tuple in a relation must be unique for it to be a
valid relation

• Therefore, there must be an attribute or set of attributes that is
unique and so can be used to identify each tuple

• This attribute or set of attributes is called a key

• There are several types of key…
- Superkey

- Candidate Key

- Primary Key

- Alternate Key

- Foreign Key

Superkeys

A superkey is …

- …any attribute or combination of attributes containing unique
values for each tuple.

- The combination of attributes containing ALL attributes in a relation is
always a superkey

- Consider the Student relation:
- STUDENT (StudentNumber, FamilyName, Degree, Major, GPA)

•What are the superkeys of the STUDENT relation?

Candidate Keys

A candidate key is…

- A minimal superkey
- A superkey is minimal if the removal of an attribute results in the loss of

uniqueness

- Consider the relation:
• MOTOR VEHICLE (EngineNo, RegistrationNo, Colour, Model)

•List all the superkeys of the relation.
•Which of those superkeys are also candidate keys?

Candidate Keys

• MOTOR VEHICLE (EngineNo, RegistrationNo, Colour,
Model)

• Assuming both EngineNo and RegistrationNo are
unique,

• the superkeys are:

•E, R, C, M E, R, M
R, C, M

•E, C, M E, R, C
R, M

•E, M E, R
R, C

•E, C
R

•E

And EngineNo and RegistrationNo are both candidate keys
of the relation

Primary Keys

A Primary Key is

- The candidate key that is chosen to be the key
for the relation

- A relation can only have one primary key

- The value of the primary key:

• MUST be UNIQUE

• MUST NOT be NULL

- If a primary key is made up of > 1 attribute, it is
known as a compound, composite or
concatenated primary key

•TUTORIAL (TutorialDay, TutorialStartTime, TutorName)

Question

What might be the primary keys of the following
relations?

- STUDENT

- LECTURE

- AIRLINE TICKET

- BOOK

How do we find keys?

• Look at the data set - if you know that it is representative

• Formally – from the functional dependencies among the data

• We will look more at this in Topic 4, Normalisation

• In practice – from the meaning of the data in the real world

• e.g. your student number is designed to be a unique identifier

• Phone numbers and email addresses must be unique to be useful

Alternate Keys

An Alternate key is:

- Simply, any candidate key that is not chosen as the primary
key of the relation

Examples???

Foreign Keys

A Foreign Key is:

• An attribute in one relation that is used to reference the primary key in
another relation

• This allows us to determine which records are related

STUDENT UNIT

StudentNo LastName UnitCode UnitName

20123456 Wells ICT285 Databases

20987654 Kendall ICT292 IS Management

20876567 Norbert ICT301 Enterprise Architectures

ENROLMENT

StudentNo UnitCode

20123456 ICT285

20123456 ICT292

20876567 ICT301

20876567 ICT285

20987654 ICT285

Foreign keys

• A well designed relational database will be able to link all its
tables through primary keys and foreign keys in a way that
represents the meaning in the data

• This gives us great flexibility in formulating queries to retrieve
combinations of information

• We’ll look at this formally when we cover normalisation, but
for now, notice how primary keys and foreign keys are used in
the example tables you are provided with

Other keys that are used in practice

Secondary Key:
• An attribute or set of attributes used for data retrieval

purposes NOT required to be unique

• (however, sometimes you see ‘secondary’ used to mean
the same as alternate, which gets confusing)

•Surrogate Key:

• An artificial primary key created to simplify retrieval

• e.g. if you have a very long concatenated candidate key

• Only used for implementation, usually created
automatically by the DBMS

The takeaways…

• Keys are an important concept in the relational model

• Keys provide the ability to identify and locate individual tuples
and relationships among tuples

• Superkey, candidate key, primary key, alternate key identify a tuple
uniquely

• Foreign keys are used to define relationships

• Secondary keys are non-unique and used for data retrieval

• Surrogate keys are substitutes for primary keys used for convenience of
implementation

Topic 02: Part 03

Integrity Constraints

Data integrity constraints

• Data integrity means that the data held in the database must
make sense:

• In other words, it is consistent and reflects the real world
correctly

• We ensure data integrity by enforcing constraints on the data

• In RM we are primarily concerned with the following
constraints:

- Domain Constraints

- Entity Integrity Constraint

- Referential Integrity Constraint

- Enterprise Constraints

Domain constraint

•The domain constraint applies to the values of an
attribute

•It specifies that:

• Each attribute within a relation must be from a
single domain

• The domain of an attribute limits its data to
particular set of allowable values

• Domains are more than just data type, as they
indicate the meaning of the data

• GPA must be a numeric value between 0-4

• Final grade must be one of {HD, D, C, P, N}

Entity Integrity constraint

The Entity Integrity constraint applies to a SINGLE relation

It specifies that:

• The primary key value cannot be NULL

•The primary key value is used to identify individual tuples in a relation.

If the value is NULL, we cannot identify some tuples

• The primary key value must be UNIQUE

•By definition, each tuple in a relation must be unique. If a tuple is not

unique, then tuples cannot be individually identified

Referential Integrity constraint

The Referential Integrity constraint applies to a TWO relations

It specifies that:

• If a foreign key exists in a relation, its value must either refer to an
existing record in the relation it references (i.e. it must match a primary
key value in that relation),
or be wholly null

•Referential integrity maintains consistency between the information in different
relations

Referential integrity: example

Is referential integrity violated here? Why or why not?

EmpNo FamilyName GivenName DeptNo

12345678 Smith John 5

23456789 Wong Franklin 2

34567890 Zelaya Alicia 3

45678901 Wallace Jennifer 2

DeptNo DeptName

1 Research

2 Admin

3 HQ

5 Youth

Referential integrity: example

Is referential integrity violated here? Why or why not?

EmpNo FamilyName GivenName DeptNo

12345678 Smith John 5

23456789 Wong Franklin 2

34567890 Zelaya Alicia

45678901 Wallace Jennifer 2

DeptNo DeptName

1 Research

2 Admin

3 HQ

5 Youth

Referential integrity: example

Is referential integrity violated here? Why or why not?

EmpNo FamilyName GivenName DeptNo

12345678 Smith John 5

23456789 Wong Franklin 2

34567890 Zelaya Alicia 4

45678901 Wallace Jennifer 2

DeptNo DeptName

1 Research

2 Admin

3 HQ

5 Youth

Example:
Are entity integrity and referential integrity
constraints met here?

Figure 2.4 in Rob, P. & systems: design, implementation and management. 4th Ed. Thomson Learning. p.69

Enterprise Constraints

Enterprise constraints or business rules

• These are additional constraints that apply to the particular
system being modelled

• They are specified by the users of the system, rather than
the requirements of the relational model

• A student must have passed the prerequisite for a unit before
enrolling in it

• A student must have passed 18 points at Part 1 before enrolling in a
Part 2 unit

• Also known as general constraints

The takeaways…

The relational database model has a number of constraints that
keep the data correct and consistent:
• The domain constraint states that the value of a particular attribute

always comes from the same (specified) domain

• The entity integrity constraint states that the value of the primary key
must be unique and not null

• The referential integrity constraint states that the value of a foreign key
must match an existing primary key, or be null

• Enterprise constraints specify constraints relating to business rules that
must hold true, sometimes across multiple attributes or relations

Topic 02: Part 04

Relational Algebra

Operations on the relational model

As part of its definition, the relational model includes a set of
operations that define the way in which relations can be
manipulated

These operations can be expressed in two logically equivalent
ways:

• The relational calculus (non-procedural)

• The relational algebra (procedural)

We will look at the relational algebra because:

• It’s simpler to understand

• It’s more useful when we come to examine query optimisation

Relational Algebra

Codd defined the relational algebra as part of the relational model.
It:

• is a theoretical language: there are no commercial implementations of the
relational algebra

• assists with understanding the basic operations that can be performed on a
relational database

• Is a procedural language – you need to specify the order in which the
operations are carried out

• always transforms one or two relations into a new relation (closure
property)

• is used in DBMSs for internal representation of query plans for optimisation

Relational Algebra operators

The relational algebra operators can be classified into:

• Relation specific operators

•RESTRICT, PROJECT, CARTESIAN PRODUCT, JOIN, DIVISION

• Traditional set operators

•UNION, INTERSECT, MINUS (DIFFERENCE)

• Extended operators

Relation Specific Operators

• RESTRICT 

• PROJECT 

• CARTESIAN PRODUCT X

• JOIN *
• (various flavours)

• DIVISION 

Operations on a single relation:
Restrict and Project

- Restrict and Project are similar in that the result of operations
using them is a subset of the original relation

Restrict Project

The Restrict Operator

Restrict 

• Operates on one relation

• Produces a subset of the tuples of a relation

• Uses a condition or logical expression to restrict the tuples in
the result relation

• The resulting relation has the same attributes as the original
relation

• Referred to in some texts as Select

EMPLOYEE (E#, Name, Age, Salary)
'Restrict to Employees whose age is less than 30'

 Age < 30 (EMPLOYEE)

restriction condition relation name

E
#

Name Age Salary E# Name Age Salary

1 Smith 20 1000 1 Smith 20 1000

2 Jones 35 3000 3 Tan 25 2500

3 Tan 25 2500

Original Relation Result Relation

The restriction condition may be any Boolean expression

e.g.  Age<30 and Salary<=1000 (EMPLOYEE)

The Project Operator

Project 

• Operates on one relation

• Used to select a subset of attributes of a relation

• The result of a project is a relation with only the attributes
specified, and any duplicate tuples removed.

•(WHY are the duplicates removed?)

'List the names and salaries of all employees'

 Name, Salary (EMPLOYEE)

attribute list relation name

E# Name Age Salary Name Salary

1 Smith 20 1000 Smith 1000

2 Jones 35 3000 Jones 3000

3 Smith 25 1000

Notice that duplicates can arise in the result if non-key attributes only
are projected

Original Relation Result Relation

Sequences of operations

Since the result of a relational algebra operation is

another relation, we can apply several operations in

sequence

To represent this we can either:

• Write the operations as a single expression

(sequence implied by brackets), OR

• Create, temporary, intermediate relations

(you will need to name them appropriately)

Both are correct, so use whichever you find easiest

EMPLOYEE (E#, Name, Salary, Dept)

'Give the name and salary of all employees who work in
department 5'

 Name, Salary ( Dept = 5 (EMPLOYEE))

or:

 Dept = 5 (EMPLOYEE) Temp

 Name, Salary (Temp)  Result

Example: single expression v intermediate
relations

Ensuring a sequence of operations is
correct

• Because relational algebra is procedural, you need to make
sure that each step in the sequence preserves attributes/tuples
that will be needed in a later operation

EMPLOYEE (E#, Name, Salary, Dept)

'Give the name and salary of all employees who work in
department 5'

 Dept = 5 ( Name, Salary (EMPLOYEE))

Why won’t this work??

Efficiency of a sequence of operations

• Some sequences will be more efficient than others in terms of the number
of tuples returned by the each of the operations

• Finding an efficient sequence is the basis of query optimisation in the
DBMS – the query optimiser takes the input query and works out the best
way to solve it

• Efficiency is especially relevant when there are many relations to be joined

• However, when you are doing the relational algebra exercises for this topic
you don’t need to bother about creating an efficient query – just a correct
one!

Cartesian Product operator

•Cartesian Product X

• Applies to two relations

• R1 X R2

• Result is a relation with the combined attributes of the two
relations and records consisting of all possible combinations
of tuples from the two relations

Cartesian Product Example

- Why is this result not very meaningful?

- What would we need to do next??

E# EName D#

111 Fred 1

222 Jane 2

555 Ann 1

X

D# DName

1 Admin

2 Research

E# EName EMP.D# DEPT.D# DName

111 Fred 1 1 Admin

111 Fred 1 2 Research

222 Jane 2 1 Admin

222 Jane 2 2 Research

555 Ann 1 1 Admin

555 Ann 1 2 Research

Natural Join Operator

R *join condition S
• An operation on two relations, equivalent to a product followed by a

restrict

• Usually, the select is on equality of related records from the two relations
– equijoin or natural join

• Thus the join operation allows us to process relationships between
relations, by joining on primary key and foreign key

• EMP* EMP.D# = DEPT.D# DEPT

• Note this is the same as:

• EMP X DEPT  TEMP

• Emp.D#=Dept.D# (TEMP) Result

E# EName D# DName

111 Fred 1 Admin

222 Jane 2 Research

555 Ann 1 Admin

Note how only the tuples from both relations that have the
same D# are in the result relation.

*EMP.D#=DEPT.D#

E# EName EMP.D# DEPT.D# DName

111 Fred 1 1 Admin

222 Jane 2 2 Research

555 Ann 1 1 Admin

The repeated attribute is removed from the result relation

1Ann555

2Jane222

1Fred111

D#ENameE#

1Ann555

2Jane222

1Fred111

D#ENameE#

Research2

Admin1

DNameD#

Research2

Admin1

DNameD#

Slide 58

EMP DEPT

EMP* EMP.D# = DEPT.D# DEPT

Types of joins

• The natural join * (on primary and foreign key, eliminating
duplicates) is usually the most useful

• Natural join is sometimes written ⋈

There is also:

⋈ Equijoin – joins on equality of attributes, doesn’t eliminate
duplicate common attribute from result

θ Theta join – joins on any comparison operator

--- you don’t need to worry about equi- or theta joins here

Outer join – next slides

Outer Join Operator

A variation on the natural join:

• Natural join preserves matching tuples

• Outer join also preserves non-matching tuples

• Any missing values in the second relation are set to null

• Useful in examples such as:

- All units and the name of the Unit Coordinator, including units that do not
have a Unit Coordinator

- All students and the tutorials they are enrolled in, if any

• Outer joins can be:

• Full

• One-sided (left outer join, right outer join)

e.g. ‘All employees, and the name of their next of
kin, if they have one’

EMP LEFT OUTER JOINEMP.E#=NOK.E#NOK

E# EName D#

111 Fred 1

222 Jane 2

555 Ann 1

NOK# Name E#

11 Liz 111

33 John 222

E# EName D# NOK# Name

111 Fred 1 11 Liz

222 Jane 2 33 John

555 Ann 1 null null

E# EName D# NOK# Name

111 Fred 1 11 Liz

222 Jane 2 33 John

555 Ann 1

E# EName D# NOK# Name

111 Fred 1 11 Liz

222 Jane 2 33 John

- This shows a left outer
join – the tuples that
fulfil the join condition
are added to the result

- The tuples from the left
hand relation that do not
fulfil the join condition
are added to the result

- The “blank” values are
padded with null

Outer Join Operators

Right Outer JoinLeft Outer Join

Matched tuples
using the join
condition

Unmatched tuples
of the left relation

Unmatched tuples
of the right relation

Full outer join

Full Outer Join

 FacSSN FacName

 111-11-1111 joe

 222-22-2222 sue

 333-33-3333 sara

 Offerno FacSSN

 1111 111-11-1111

 2222 222-22-2222

 3333 111-11-1111

 4444

 FacSSN FacName OfferNo

 111-11-1111 joe 1111

 222-22-2222 sue 2222

 111-11-1111 joe 3333

 333-33-3333 sara

 4444

Faculty

Offering

Outer Join of Offering and Faculty

The Division Operator

Division 

Match on a subset of values
• Suppliers who supply all parts

• Lecturers who teach every CS unit

Formally,

• A relation R with two attributes is divided by a relation S with one
attribute, where S is a subset of R

• The result is a relation consisting of the attribute which was not in
S

• Each record that appears in the result appears in R in combination
with every tuple in S

SuppPart

SuppNo PartNo

S2 P3

S3 P1

S1 P1

S2 P1

S1 P3

S2 P2

Part

PartNo

P1

P2

P3

‘Find the suppliers who supply ALL parts’

SuppPart DIVIDEBY Part

SuppNo:

SuppPart

SuppNo PartNo

S2 P3

S3 P1

S1 P1

S2 P1

S1 P3

S2 P2

Part

PartNo

P1

P2

P3

Sort SuppPart by SuppNo

SuppPart DIVIDEBY Part

SuppNo:

‘Find the suppliers who supply ALL parts’

SuppPart

SuppNo PartNo

S1 P1

S1 P3

S2 P1

S2 P2

S2 P3

S3 P1

Part

PartNo

P1

P2

P3

SuppPart DIVIDEBY Part

SuppNo:

S1 {P1, P3} does not contain {P1, P2,
P3}, so is not included in the result

‘Find the suppliers who supply ALL parts’

SuppPart

SuppNo PartNo

S1 P1

S1 P3

S2 P1

S2 P2

S2 P3

S3 P1

Part

PartNo

P1

P2

P3

SuppPart DIVIDEBY Part

SuppNo:

{S2}
S2 {P1, P2, P3} does contain {P1, P2,
P3}, so S2 is included in the result

SuppPart DIVIDEBY Part

SuppNo:

‘Find the suppliers who supply ALL parts’

SuppPart

SuppNo PartNo

S1 P1

S1 P3

S2 P1

S2 P2

S2 P3

S3 P1

Part

PartNo

P1

P2

P3

SuppPart DIVIDEBY Part

SuppNo:

{S2}
S3 {P1} does NOT contain {P1, P2,
P3}, so is not included in the result

‘Find the suppliers who supply ALL parts’

Another Division…

'Find the
employees who
work on all
projects‘

Result?

E# Project Project

1 ProductX ProductX

2 ProductY ProductY

3 ProductY ProductZ

1 ProductY

1 ProductZ

2 ProductZ

3 ProductX

70

Another Division…

'Find the
employees who
work on all
projects‘

Result

E# Project Project E#

1 ProductX ProductX 1

2 ProductY ProductY

3 ProductY ProductZ

1 ProductY

1 ProductZ

2 ProductZ

3 ProductX

71

Set operators

• UNION

• INTERSECTION

• DIFFERENCE (MINUS)

72

A UNION B

A INTERSECT B

A MINUS B

Set operators

(assume A is the set on the left hand side)

Union Compatibility

Unlike the relational algebra operators that compare on the join
condition, the traditional set operators compare on the whole
relation

To do this, we need UNION COMPATIBILITY

• Same number of attributes

• Each corresponding pair of attributes is compatible
(Positional correspondence)

Often have to PROJECT the correct attributes first in order to get
union compatible relations

Union

Union R U S

• Produces a relation that includes all the tuples in R or S or
both

- Duplicates are eliminated

- By convention, the attributes in the result have the same
names as those in the first relation

Union Example

Proj_X LastName
U

Proj_Y LName


LastName

Smith Jones Smith

Jones Lee Jones

Tan Tan

Lee

'List the employees who work on Project X or
Project Y, or both’

Intersection

Intersection R  S

- Produces a relation that includes all the tuples in both R and S

Intersection Example

'List the employees who work on both Project X
and Project Y'

Proj_X LastName  Proj_Y LName


LastName

Smith Jones Jones

Jones Lee

Tan

Difference (or Minus)

Difference R – S

Produces a relation that includes all the tuples that are in R but
not in S

Difference Example

'List the employees who work on Project X but not
Project Y'

Proj_X LastName - Proj_Y LName


LastName

Smith Jones Smith

Jones Lee Tan

Tan

Extended Operators

• Various authors have introduced extensions to the original
relational algebra

• These are mainly aimed providing some computational capacity
such as simple statistical functionality, similar to that found in
SQL

• E.g., Date (2005) includes the “Extend” and “Summarize” operators

• We won’t cover extended operators any further, but note that you may
encounter them in other texts

The takeaways…

• The relational algebra provides the operators that can be used to query a set
of relations

• The result of a relational algebra operation is another relation, so queries are
constructed by applying one operation at a time, procedurally

• The restrict and project operators apply to a single relation

• The join operators enable related relations to be combined

• Natural join joins on primary key and foreign key

• Outer joins preserve non-matching tuples as well

• The division operator matches on a subset of values

• Union, intersection and difference enable set operations on union
compatible relations

Topic 02: Part 05

Conclusion and RA Examples

Learning Outcomes

• After completing this topic you should be able to:
• Describe the characteristics of the relational database model

• Define and give examples of the different types of keys used in the relational database model

• Explain and give examples of the relational model’s integrity constraints

• Use the fundamental operators of the relational algebra (restrict, project, Cartesian product, join,
intersection, difference, union, and division) to define simple queries

Some examples …

• Have a go at these and ask your tutor if you have problems.
Solutions will be posted on LMS

CUSTOMER (CustomerNumber, CustomerName, DateOfBirth)

EMPLOYEE (EmployeeNumber, EmployeeName, DateOfBirth)

The following relational algebra query is incorrect:

 CustomerName, DateOfBirth (CUSTOMER)

UNION

 DateOfBirth, EmployeeName (EMPLOYEE)

Why is the relational algebra statement above
incorrect?

Rewrite the statement to correct the error.

Example 1

Consider the following relations from a database that keeps
track of business trips made by salespeople (SPN =
Salesperson Number)

SALESPERSON (SPN, Name, StartYear, DeptNo)

• TRIP (TripID, ToCity, DepartDate, ReturnDate, SPN)

• EXPENSE (TripID, Account#, Amount)

1. Give all details of the Salesperson named ‘Bob’

2. Give the SPN and Name of salespeople who took trips to
the city Sydney

3. Give the trip ID and destination city of all trips taken by
the salesperson named ‘Dodgy’

4. Give the names of salespeople who have not travelled to
Sydney

Example 2

Example 3

Consider the following relations for a database that keeps track of student
enrolment in units and the books adopted for each unit:

STUDENT (StudID, Name, Major, DoB)

UNIT (UnitCode, UnitName, School)

• ENROL (StudID, UnitCode, Offering, Grade)

• BOOKLIST (UnitCode, Offering, ISBN)

TEXT (ISBN, Title, Publisher, MainAuthor)

1. List the unit code of the units taken by the student with the ID “1234”

2. List the names of the units taken by all students named ‘John Smith’ in the offering
Semester 2, 2014

3. Produce a list of the titles of the textbooks for units offered by the School of Information
Technology

4. List the StudID of any students who are enrolled in ALL units offered by the Dodgy School of
Business

Example 4

In terms of the following relations:

PROPERTY (PropertyNo, Address, NumberOfRooms, OwnerNo)

OWNER (OwnerNo, FamilyName, Given Names, Address)

Formulate the following relational algebra queries:

1. List the family and given names of the owners who own properties
with more than three rooms.

2. List the family and given names of any owners that do not own a
property.

